
Oh Joy! Building
A Joystick Component
by Ken Otto

This article demonstrates the
construction of a joystick

component, using the services of
MMSYSTEM.DLL, the multimedia
API of both Windows 3.1 and
Windows 95.

The joystick is an analog input
device which provides absolute
position information to your appli-
cation. This information can tell
you not only which direction your
joystick is pointing, but how far.
Several devices can utilize joystick
services, including touch screens,
digitizing tablets and light pens.
Note, however, that these devices
are not considered a replacement
for the mouse.

The driver for the IBM Game
Adapter (IBMJOY.DRV) supports
two 2-axis joysticks with two
buttons or one 3-axis joystick with
4 buttons and can be found on
CompuServe in the WINSHARE
forum under General Win Utils, the
filename is IBMJOY.ZIP.

There are two methods for
receiving joystick information.
First, we could process joystick
messages from a ‘captured’
joystick. A captured joystick will
broadcast messages when the
joystick is moved or a button is
pressed. This could provide us a
resolution of around 1 millisecond.
Alternatively, we can poll the
joystick directly.

Since our joystick component
will be a descendant of type TTimer,
the direct polling method will be a
nice fit for our new component.
The TTimer will provide us a maxi-
mum resolution of about 55 milli-
seconds. The joystick services we
will utilize include:
➣ joyGetNumDevs: Returns the

number of joysticks supported
by the joystick services.

➣ joyGetDevCaps: Returns joystick
capabilities.

➣ joyGetPos: Returns joystick po-
sition and button information.

➣ joySetCalibration: This one is
undocumented and returns
calibration values from the
SYSTEM.INI file.

The component we will build will
return information for one 2-D
primary joystick, defined as
JOYSTICKID1, and two buttons. All
the definitions for our interface to
MMSYSTEM.DLL can be found in
the DELPHI\DOC\MMSYSTEM.INT
file, except for our undocumented
use of joySetCalibration, which we
must define ourselves. Extending
this component to process a sec-
ond joystick or the third dimension
of the joystick would be a trivial
matter. One important note is that
MMSYSTEM definitions can’t be
found in Delphi through the IDE
help menu. These definitions re-
side in a separate help file:
DELPHI\BIN\MMSYSTEM.HLP.

Component Construction
We will derive our component,
called TJoyStick, from TTimer. Note
that by default the timer Enabled
property is True. We don’t want our
component to return joystick infor-
mation until the component is
initialized and we have determined
the joystick’s presence and capa-
bilities. Therefore we override the
default setting of True to False. You
will need to add MMSystem to your
USES clause (see Listing 1).

The first method we call in our
component is InitJoy, which will
prepare our joystick for use. The
function joyGetNumDevs will return
the number of joysticks the system
can support to the object field
FNumOfJoysticks:

FNumOfJoysticks :=
 joyGetNumDevs;

We then call joyGetDevCaps for the
primary joystick, which returns
the joystick capabilities into the
TJoyCaps data structure:

joyGetDevCaps(JOYSTICKID1,
 @FJoyCaps1,
 SizeOf(FJoyCaps1));

Now we must determine if the joy-
stick is plugged in and ready to use.
Calling joyGetPos will query the
joystick and determine if it is
ready. If no error is detected, joy-
stick position information will be
returned in the object variable
FJoyInfo1:

if joyGetPos(JOYSTICKID1,
 @FJoyInfo1) =
 JOYERR_NOERROR then
 FJoystick1Ready := True
 {joystick is plugged in
 and ready}
else
 FJoystick1Ready := False;
 {driver present, no joystick
 plugged in}

If our call to InitJoy is successful,
we can then load the calibration
data. During Windows startup,
MMSYSTEM.DLL loads the joystick
driver, however joystick calibra-
tion data is not loaded. This infor-
mation is stored in SYSTEM.INI:

[joystick.drv]
JoyCal0=0d4c 0094 0eaf 00b3 0000 0001

JoyCal1=0000 0001 0000 0001 0000 0001

The trick here is to load the
primary joystick values (JoyCal0)
into the following data structure
(object field FJoyCalibrate):

{ This is an undocumented
 structure so we must declare
 it in our component }
TJoyCalibrate = record
 XBase : Word;
 XDelta : Word;
 YBase : Word;
 YDelta : Word;
 ZBase : Word;
 ZDelta : Word;
end; { TJoyCalibrate }

40 The Delphi Magazine Issue 7

unit Joystick;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes, Graphics,
 Controls, Forms, Dialogs, ExtCtrls, MMSystem, IniFiles;
type
 TReturnLevel = (Level1,Level2,Level3);
 {This is an undocumented structure so we must declare it}
 TJoyCalibrate = record
 XBase : Word;
 XDelta : Word;
 YBase : Word;
 YDelta : Word;
 ZBase : Word;
 ZDelta : Word;
 end; {TJoyCalibrate}
 TJoyStick = class(TTimer)
 private { Private declarations }
 FJoyInfo1 : TJoyInfo;
 FJoyCaps1 : TJoyCaps;
 FJoyCalibrate : TJoyCalibrate;
 FJoy1B1 : Word;
 FJoy1B2 : Word;
 FNumOfJoySticks : Word;
 FJoystick1Ready : Boolean;
 FReturnLevel : TReturnLevel;
 protected { Protected declarations }
 public { Public declarations }
 constructor Create(AOwner : TComponent); override;
 property NumOfJoySticks : Word read FNumOfJoySticks;
 property Joy1X : Word read FJoyInfo1.wXPos;
 property Joy1Y : Word read FJoyInfo1.wYPos;
 property Joy1Z : Word read FJoyInfo1.wZPos;
 property Joy1B1 : Word read FJoy1B1;
 property Joy1B2 : Word read FJoy1B2;
 function InitJoy : Boolean;
 procedure ProcessJoystickInfo;
 procedure CalibrateJoyStick;
 published { Published declarations }
 property ReturnLevel : TReturnLevel
 read FReturnLevel write FReturnLevel;
 end; {TJoyStick}
{undocumented use}
function joySetCalibration(JoyID : Word; XBase : PWord;
 XDelta : PWord; YBase : PWord; YDelta : PWord;
 ZBase : PWord; ZDelta : PWord): Word;
procedure Register;
implementation
{undocumented use}
function joySetCalibration(JoyID : Word; XBase : PWord;
 XDelta : PWord; YBase : PWord; YDelta : PWord; ZBase :
 PWord; ZDelta : PWord): Word; external ’MMSYSTEM’;
procedure TJoystick.ProcessJoystickInfo;
begin {process info for 1 joystick}
 case FReturnLevel of
 Level1 : begin {raw data from Joystick}
 joyGetPos(JOYSTICKID1, @FJoyInfo1);
 FJoy1B1 := FJoyInfo1.wButtons and 1;
 FJoy1B2 := (FJoyInfo1.wButtons and 2) shr 1;
 end; {Level1}
 Level2 : begin {data SHR 11, values 0-31}
 joyGetPos(JOYSTICKID1, @FJoyInfo1);
 FJoyInfo1.wXPos := FJoyInfo1.wXPos SHR 11;
 FJoyInfo1.wYPos := FJoyInfo1.wYPos SHR 11;
 FJoyInfo1.wZPos := FJoyInfo1.wZPos SHR 11;
 FJoy1B1 := FJoyInfo1.wButtons and 1;
 FJoy1B2 := (FJoyInfo1.wButtons and 2) shr 1;
 end; {Level2}
 Level3 : begin {data SHR 13, values 0-7}
 joyGetPos(JOYSTICKID1, @FJoyInfo1);
 FJoyInfo1.wXPos := FJoyInfo1.wXPos SHR 13;
 FJoyInfo1.wYPos := FJoyInfo1.wYPos SHR 13;
 FJoyInfo1.wZPos := FJoyInfo1.wZPos SHR 13;
 FJoy1B1 := FJoyInfo1.wButtons and 1;
 FJoy1B2 := (FJoyInfo1.wButtons and 2) shr 1;
 end; {Level3}
 end; {case}
end; {TJoystick.ProcessJoystickInfo}
function TJoystick.InitJoy : Boolean;
begin
 FNumOfJoysticks := joyGetNumDevs;
 if FNumOfJoysticks in [1,2] then begin
 {system can support 1 or 2 joysticks}
 Result := True;
 joyGetDevCaps(JOYSTICKID1, @FJoyCaps1,
 SizeOf(FJoyCaps1));
 if joyGetPos(JOYSTICKID1, @FJoyInfo1) =
 JOYERR_NOERROR then
 FJoystick1Ready := True
 {joystick is plugged in and ready}
 else
 FJoystick1Ready := False;
 {driver present, no joystick plugged in}

 end else
 Result := False; {no joystick driver is present}
end; {TJoystick.InitJoy}
constructor TJoyStick.Create(AOwner : TComponent);
begin
 inherited Create(AOwner);
 Enabled := False; {override default setting of True}
 FReturnLevel := Level1; {raw values from Joystick}
end; {TJoyStick.Create}
{No error checking is performed, since the values are
 coming from SYSTEM.INI and not a user. The string
 passed in will have a length of 4. It would be easy
 to add necessary error checking if needed}
function HexStrToInt(var HexStr : String) : Word;
var
 X : ShortInt;
 TempInt : Word;
 Total : Word;
begin
 HexStr := AnsiLowerCase(HexStr); {convert to lower case}
 Total := 0;
 for X := 1 to Length(HexStr) do begin
 if (HexStr[X] >= ’a’) then { value is between a-f }
 TempInt := Ord(HexStr[X]) - Ord(’a’) + 10
 else { value is between 0-9 }
 TempInt := Ord(HexStr[X]) - Ord(’0’);
 Total := (Total shl 4) + TempInt;
 end; {for}
 Result := Total;
end; {HexStrToInt}
procedure TJoyStick.CalibrateJoystick;
var
 Joy1ConfigStr : String[29];
 Joy2ConfigStr : String[29];
 SysIni : TIniFile;
 HexStr : String[4];
begin
 SysIni := TIniFile.Create(’SYSTEM.INI’);
 Joy1ConfigStr :=
 SysIni.ReadString(’joystick.drv’, ’JoyCal0’, ’’);
 Joy2ConfigStr :=
 SysIni.ReadString(’joystick.drv’, ’JoyCal1’, ’’);
 Move(Joy1ConfigStr[1], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.XBase := HexStrToInt(HexStr);
 Move(Joy1ConfigStr[6], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.XDelta := HexStrToInt(HexStr);
 Move(Joy1ConfigStr[11], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.YBase := HexStrToInt(HexStr);
 Move(Joy1ConfigStr[16], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.YDelta := HexStrToInt(HexStr);
 Move(Joy1ConfigStr[21], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.ZBase := HexStrToInt(HexStr);
 Move(Joy1ConfigStr[26], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.ZDelta := HexStrToInt(HexStr);
 joySetCalibration(0, @FJoyCalibrate.XBase,
 @FJoyCalibrate.XDelta, @FJoyCalibrate.YBase,
 @FJoyCalibrate.YDelta, @FJoyCalibrate.ZBase,
 @FJoyCalibrate.ZDelta);
 Move(Joy2ConfigStr[1], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.XBase := HexStrToInt(HexStr);
 Move(Joy2ConfigStr[6], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.XDelta := HexStrToInt(HexStr);
 Move(Joy2ConfigStr[11], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.YBase := HexStrToInt(HexStr);
 Move(Joy2ConfigStr[16], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.YDelta := HexStrToInt(HexStr);
 Move(Joy2ConfigStr[21], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.ZBase := HexStrToInt(HexStr);
 Move(Joy2ConfigStr[26], HexStr[1], 4);
 HexStr[0] := Chr(4);
 FJoyCalibrate.ZDelta := HexStrToInt(HexStr);
 joySetCalibration(1, @FJoyCalibrate.XBase,
 @FJoyCalibrate.XDelta, @FJoyCalibrate.YBase,
 @FJoyCalibrate.YDelta, @FJoyCalibrate.ZBase,
 @FJoyCalibrate.ZDelta);
end; {TJoyStick.CalibrateJoystick}
procedure Register;
begin
 RegisterComponents(’Develop’, [TJoyStick]);
end;
end. {Joystick}

➤ Listing 1: Full source code for the TJoyStick component, which is also included on this month’s disk
along with the example program discussed in the article. Of course, you will need a joystick and the
driver in order to make use of this code!

March 1996 The Delphi Magazine 41

The values we are loading are hexa-
decimal strings. The function to
convert these hexadecimal string
values to integer values is called
HexStrToInt. Now we call:

joySetCalibration(1,
 @FJoyCalibrate.XBase,
 @FJoyCalibrate.XDelta,
 @FJoyCalibrate.YBase,
 @FJoyCalibrate.YDelta,
 @FJoyCalibrate.ZBase,
 @FJoyCalibrate.ZDelta);

and our joystick is calibrated with
the system values.

Our component includes the
published property ReturnLevel.
The call to joyGetPos will return
values in the range of 0 to 65535, in
increments of the associated delta
value found in TJoyCalibrate. This
may perhaps be more resolution

than the component user may
necessarily require.

By shifting bits of a word, we can
return varying resolutions. If we
shift a word to the right 11 places,
we will return values between 0 and
31 in each axis. Our center position
should be approximately 15.
Moving the joystick to the left, the
X axis approaches 0, to the right it
will approach 31.

Consider a game with the joy-
stick controlling a man and this
man can walk, trot and run in both
directions of the X axis. Therefore
returning values between 0 and 31
may be more appropriate than
values 0 to 65535.

Once the programmer places the
ProcessJoystickInfo method into
the OnTimer event of the joystick
component, the method will poll
the current position of the joystick
and if a ReturnLevel of 2 or 3 is
selected, shift the bits of the

joystick’s current position by the
appropriate amount. For example,
ReturnLevel of 2 looks like this:

Level2 :
 begin
 {data SHR 11, values 0-31}
 joyGetPos(JOYSTICKID1,
 @FJoyInfo1);
 {joystick is polled}
 FJoyInfo1.wXPos :=
 FJoyInfo1.wXPos SHR 11;
 {the bits are shifted}
 FJoyInfo1.wYPos :=
 FJoyInfo1.wYPos SHR 11;
 FJoy1B1 :=
 FJoyInfo1.wButtons and 1;
 FJoy1B2 :=
 (FJoyInfo1.wButtons
 and 2) shr 1;
 end; {Level2}

Also note that button 1 and button
2 information is returned as 0 (off
or up) and 1 (on or pressed).

unit Main;
interface
uses
 SysUtils, WinTypes, WinProcs, Messages, Classes,
Graphics, Controls,
 Forms, Dialogs, ExtCtrls, Joystick, MMSystem;
type
 TfrmMain = class(TForm)
 JoyStick1: TJoyStick;
 procedure JoyStick1Timer(Sender: TObject);
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 private { Private declarations }
 FPoint : TPoint; {stores the cursor position}
 {handle to a memory location for the wave file}
 FWavFile : THandle;
 {pointer to the wave file in memory}
 FWavPtr : Pointer;
 public { Public declarations }
 end;
var frmMain: TfrmMain;

implementation
{$R *.DFM}

procedure TfrmMain.JoyStick1Timer(Sender: TObject);
begin
 Joystick1.ProcessJoystickInfo; {poll the joystick}
 {get the cursors current position}
 GetCursorPos(FPoint);
 {test the directional info from the joystick}
 if Joystick1.Joy1X < 2 then
 {and set the new cursor coordinates}
 FPoint.X := FPoint.X - 10
 else if Joystick1.Joy1X > 5 then
 FPoint.X := FPoint.X + 10;
 if Joystick1.Joy1Y < 2 then
 FPoint.Y := FPoint.Y - 10
 else if Joystick1.Joy1Y > 5 then
 FPoint.Y := FPoint.Y + 10;
 {place the cursor at the new coordinates}
 SetCursorPos(FPoint.X, FPoint.Y);
 if Joystick1.Joy1B1 = 1 then begin
 {if button is pressed, change the cursor}
 if Screen.Cursor = crMultiDrag then
 Screen.Cursor := crDefault
 else
 Screen.Cursor := Pred(Screen.Cursor);
 end;

 if Joystick1.Joy1B2 = 1 then
 {if button is pressed, play the wave file}
 sndPlaySound(FWavPtr, SND_ASYNC or SND_MEMORY);
end;

procedure TfrmMain.FormCreate(Sender: TObject);
var
 DingWav : PChar;
 WinDirSize : Integer;
 WavSize : LongInt;
 WavPath : array[0..144] of Char;
 WavHandle : THandle;
begin
 DingWav := ’\ding.wav’; {the wave file we want to play}
 FillChar(WavPath, SizeOf(WavPath), #0); {init buffer}
 if Joystick1.InitJoy then begin
 {attempt to initialize the joystick}
 Joystick1.CalibrateJoystick; {calibrate the joystick}
 {enable joystick component}
 JoyStick1.Enabled := True;
 end;
 {find Win dir}
 WinDirSize :=
 GetWindowsDirectory(WavPath, SizeOf(WavPath));
 {append the wave file}
 Move(DingWav[0], WavPath[WinDirSize],
 StrLen(DingWav));
 WavHandle := _lopen(WavPath, OF_READ); {open the file}
 {determine file size}
 WavSize := _llseek(WavHandle, 0, 2);
 {reset the file to the begining}
 _llseek(WavHandle, 0, 0);
 {alloc memory}
 FWavFile :=
 GlobalAlloc(GMEM_MOVEABLE + GMEM_SHARE, WavSize);
 {get a pointer to the allocated memory}
 FWavPtr := GlobalLock(FWavFile);
 {copy wave file to memory location}
 _lread(WavHandle, FWavPtr, WavSize);
 _lclose(WavHandle); {close the file}
end;

procedure TfrmMain.FormDestroy(Sender: TObject);
begin
 GlobalUnlock(FWavFile); {remove the lock on the memory}
 GlobalFree(FWavFile); {free the memory}
end;

end.

➤ Listing 2: Sample application

42 The Delphi Magazine Issue 7

Sample Application
Putting this joystick component to
work in a sample application will
demonstrate its capabilities. Let’s
call our demo JoyDemo. We want
this application to be simple
enough to allow quick construc-
tion, yet still exercise all of the
features in the joystick component.
JoyDemo will move a cursor
around the screen. By pushing
button 1 on the joystick, we will
cycle through all of the pre-defined
cursors in Windows. Pushing but-
ton 2 will sound the Windows
DING.WAV file.

First we must place MMSystem into
the USES clause. Since we are going
to play a sound file, DING.WAV, we
will use the function sndPlaySound.
Although MMSystem was declared in
our joystick component, it is not
within scope for JoyDemo. The
FormCreate event of JoyDemo will
initialize the joystick. If successful,
it will then calibrate the joystick
and enable it. We then retrieve

the Windows directory using
GetWindowsDirectory and append to
this the name of the WAV file we
want to play.

It is simple enough to play the
wave file directly with this informa-
tion, but we would be retrieving the
data from disk, making our
program slower than it needs to be.
Instead, we will allocate memory
for the sound data using the
Windows API GlobalAlloc and
retrieve a pointer to this memory
with the Windows API GlobalLock.

In the OnTimer event of the
joystick component, we call the
method ProcessJoystickInfo. This
returns the current joystick infor-
mation. Now we call the Windows
API GetCursorPos, which returns
the X and Y coordinates into a
structure of type TPoint. Now we
test the directional information of
the joystick, and using the
Windows API SetCursorPos, we set
the new position of the cursor
accordingly. Next we test button 1

of the joystick, and if it’s pressed
we cycle to a new cursor. Finally we
check button 2, and if it’s pressed,
we play the WAV file. Note the flag
SND_ASYNC in sndPlaySound. This flag
plays the WAV file asynchronously
and the function returns immedi-
ately after beginning the sound.

In a nutshell, this completes our
joystick component and the demo
application. All the source code
for the component and example
project is on this month’s disk. Of
course, since this is Delphi, you can
easily inherit the component
capabilities into your own new
components or objects!

Ken Otto and his wife Lorna live in
Sacramento, California, USA. Ken
is a programmer for Pacific Coast
Building Products, writing Pascal
applications on the HP3000.
Programming in Delphi is a hobby
he enjoys. He can be reached at
CompuServe 73041,1336

March 1996 The Delphi Magazine 43

	Component Construction
	Sample Application

